Tuesday, February 27, 2007

Artificial Retina

Patients who have gone blind are a step closer to perhaps one day regaining some of their sight.

Researchers at the USC Doheny Eye Institute announced today the next step in their efforts to advance technology that hopefully will help patients with retinitis pigmentosa and macular degeneration regain some vision using an implanted artificial retina.

The announcement by Mark Humayun, professor of ophthalmology at the Keck School of Medicine of USC and associate director of research at the Doheny Retina Institute, came at a press conference at the annual meeting of the American Association for the Advancement of Science in San Francisco.

From Science Daily

Article from USC

Thursday, February 22, 2007

Research integrates photonic circuitry on a silicon chip

In work that could lead to completely new devices, systems and applications in computing and telecommunications, MIT researchers are bringing the long-sought goal of "optics on a chip" one step closer to market.
 
In the January 2007 inaugural issue of the journal Nature Photonics, the team reports a novel way to integrate photonic circuitry on a silicon chip. Adding the power and speed of light waves to traditional electronics could achieve system performance inconceivable by electronic means alone.
 
The MIT invention will enable such integrated devices to be mass-manufactured for the first time. And, depending on the growth of the telecom industry, the new devices could be in demand within five years, said co-author Erich P. Ippen, the Elihu Thomson Professor of Electrical Engineering and Physics.
 
The new technology will also enable supercomputers on a chip with unique high-speed capabilities for signal processing, spectroscopy and remote testing, among other fields.
 

New analog circuits could impact consumer electronics

Advances in digital electronic circuits have prompted the boost in functions and ever- smaller size of such popular consumer goods as digital cameras, MP3 players and digital televisions. But the same cannot be said of the older analog circuits in the same devices, which process natural sights and sounds in the real world. Because analog circuits haven't enjoyed a similar rate of progress, they are draining power and causing other bottlenecks in improved consumer electronic devices.
 
Now MIT engineers have devised new analog circuits they hope will change that. Their work was discussed at the International Solid State Circuits Conference (ISSCC) in San Francisco Feb. 11-15.
 
"During the past several decades engineers have focused on allowing signals to be processed and stored in digital forms," said Hae-Seung Lee, a professor in MIT's Microsystems Technology Laboratories (MTL) and the Department of Electrical Engineering and Computer Science (EECS). "But most real-world signals are analog signals, so analog circuits are an essential part of most electronic systems."
 
Analog circuits are used to amplify, process and filter analog signals and convert them to digital signals, or vice versa, so the real world and electronic devices can talk to each other. Analog signals are continuous and they vary in size, whereas digital signals have specific or discrete values.
 

Friday, February 02, 2007

MIT-led panel backs 'heat mining' as key U.S. energy source


A comprehensive new MIT-led study of the potential for geothermal energy within the United States has found that mining the huge amounts of heat that reside as stored thermal energy in the Earth's hard rock crust could supply a substantial portion of the electricity the United States will need in the future, probably at competitive prices and with minimal environmental impact.

An 18-member panel led by MIT prepared the 400-plus page study, titled "The Future of Geothermal Energy" (PDF, 14.1 MB). Sponsored by the U.S. Department of Energy, it is the first study in some 30 years to take a new look at geothermal, an energy resource that has been largely ignored.

The goal of the study was to assess the feasibility, potential environmental impacts and economic viability of using enhanced geothermal system (EGS) technology to greatly increase the fraction of the U.S. geothermal resource that could be recovered commercially.

Although geothermal energy is produced commercially today and the United States is the world's biggest producer, existing U.S. plants have focused on the high-grade geothermal systems primarily located in isolated regions of the west. This new study takes a more ambitious look at this resource and evaluates its potential for much larger-scale deployment.

Original Article