Monday, May 21, 2007

Death of the cell phone charger

 
(Business 2.0 Magazine) -- How much money could you make from a technology that replaces electrical wires? A startup called Powercast, along with the more than 100 companies that have inked agreements with it, is about to start finding out. Powercast and its first major partner, electronics giant Philips, are set to launch their first device powered by electricity broadcast through the air.
 
Picture your cell phone charging up the second you sit down at your desk, and you start to get a sense of the opportunity. How big can it get? "The sky's the limit," says John Shearer, Powercast's founder and CEO. He estimates shipping "many millions of units" by the end of 2008.
 
For years, electricity experts said this kind of thing couldn't be done. "If you had asked me seven months ago if this was possible, I would have said, 'Are you dreaming? Have you been smoking something?'" says Govi Rao, vice president and general manager of solid-state lighting at Philips (Charts). "But to see it work is just amazing. It could revolutionize what we know about power."
 
World's 11 coolest products
 
So impressed was Rao after witnessing Powercast's demo last summer that he walked away jotting down a list of the industries to which the technology could immediately be applied: lighting, peripherals, all kinds of handheld electronics. Philips partnered with Powercast last July, and their first joint product, a wirelessly powered LED light stick, will hit the market this year. Computer peripherals, such as a wireless keyboard and mouse, will follow in 2008.
 
Broadcasting power through the air isn't a new idea. Researchers have experimented with capturing the radiation in radio frequency at high power but had difficulty capturing it at consumer-friendly low power. "You'd have energy bouncing off the walls and arriving in a wide range of voltages," says Zoya Popovic, an electrical engineering professor at the University of Colorado who works on wireless electricity projects for the U.S. military.
 
That's where Shearer came in. A former physicist based in Pittsburgh, he and his team spent four years poring over wireless electricity research in a lab hidden behind his family's coffee house. He figured much of the energy bouncing off walls could be captured. All you had to do was build a receiver that could act like a radio tuned to many frequencies at once.
 
"I realized we wanted to grab that static and harness it," Shearer says. "It's all energy."
Entrepreneur finds 'suite' dreams
 
So the Powercast team set about creating and patenting that receiver. Its tiny but hyperefficient receiving circuits can adjust to variations in load and field strength while maintaining a constant DC voltage. Thanks to the fact that it transmits only safe low wattages, the Powercast system quickly won FCC approval--and $10 million from private investors.
 
Powercast says it has signed nondisclosure agreements to develop products with more than 100 companies, including major manufacturers of cell phones, MP3 players, automotive parts, temperature sensors, hearing aids, and medical implants.
 
The last of those alone could be a multibillion-dollar market: Pacemakers, defibrillators, and the like require surgery to replace dead batteries. But with a built-in Powercast receiver, those batteries could last a lifetime.
 
"Everyone's looking to cut that last cord," says Alex Slawsby, a consultant at Innosight who specializes in disruptive innovation. "Think of the billion cell phones sold last year. If you could get Powercast into a small percentage of the high-end models, those would be huge numbers."
 
Could Powercast's technology also work for larger devices? Perhaps, but not quite yet. Laptop computers, for example, use more than 10 times the wattage of Powercast transmissions.
 
But industry trends are on Shearer's side: Thanks to less energy-hungry LCD screens and processors, PC power consumption is slowly diminishing. Within five years, Shearer says, laptops will be down to single-digit wattage--making his revenue potential even more electrifying.
 

Thursday, May 03, 2007

Rapid-fire pulse brings Sandia Z method closer to goal of high-yield fusion reactor

An electrical circuit that should carry enough power to produce the long-sought goal of controlled high-yield nuclear fusion and, equally important, do it every 10 seconds, has undergone extensive preliminary experiments and computer simulations at Sandia National Laboratories� Z machine facility.
 

Wednesday, May 02, 2007

Practical Holographic Video

The tyranny of two-dimensional computer and TV displays could soon be over. A team of MIT researchers has proposed a way to make a holographic video system that works with computer hardware for consumers, such as PCs with graphics cards and gaming consoles. The display, the researchers say, will be small enough to add to an entertainment center, provide resolution as good as a standard analog television, and cost only a couple hundred dollars.
 
A holographic video display could provide another way to view medical images such as MRIs and CT scans, as well as sets of complex, multidimensional data and designs for furniture and cars, says V. Michael Bove Jr., director of the consumer electronics program, CELab, at MIT. And the system would be a natural fit for displaying video games and virtual worlds. Most games now have sophisticated three-dimensional models sitting deep within their software, "but you don't see them because [the images are] rendered as a two-dimensional picture," Bove says.
 
The new system, called Mark III, is the third generation (following Mark I and Mark II) of MIT-designed holographic video displays that date back to the late 1980s. These earlier systems were "loud, finicky, required specialized computing hardware to generate a video signal, and were a general pain in the neck to work with," says Bove. A few years ago, he wondered if he could turn a laboratory-based holographic display system that cost tens of thousands of dollars into an affordable consumer product.
 
Bove and his team currently have a fourth generation of system lined up, which will be able to display an image as large as a desktop PC monitor; in contrast, the current system's displays are only about the size of a Rubik's Cube. Also, the current display is only capable of monochromatic holograms, but the fourth generation will have a full range of colors, Bove says.
 

Daily pill to beat genetic diseases

A pill that can correct a wide range of faulty genes which cause crippling illnesses should be available within three years, promising a revolution in the treatment of thousands of conditions.
 
The drug, known as PTC124, has already had encouraging results in patients with Duchenne muscular dystrophy and cystic fibrosis. The final phase of clinical trials is to begin this year, and it could be licensed as early as 2009.